
Faithful Translations between

Polyvariant Flows and

Polymorphic Types

Torben Amtoft

Boston University/Church Project

Franklyn Turbak

Wellesley College/Church Project

March 31, 2000

ESOP, Berlin

Program Analysis: Two Paradigms

Type Systems

local defined reject some
reasoning inductively programs

Deep similarities: same “plumbing”

global defined accept all
reasoning coinductively programs

Flow Logic

1

Aim of Work

Understand connection between

polyvariant flows and polymorphic types

Design systems enabling faithful translations:

Polymorphic types

Canonical

Canonical

Polyvariant flows

2

Contributions

• General framework for polyvariant

flow analysis handling both

– call-string based polyvariance

– argument based polyvariance

extending Nielson & Nielson [POPL’97] with

ideas from Palsberg & Pavlopoulou [POPL’98]

• Type system with labeled union

and intersection types

– generalises P&P

– inspired by the CIL type system

[Wells et.al, FASE’97]

• Subject reduction for flows and types

• First faithful translations (for polyvariance)

– first type system corresponding to

k-CFA (k ≥ 1)

– perspective: “let flows have it their way”
3

Road map

• Summarize existing translations between flows and type

and show how they lack faithfulness

• Sketch how to modify systems and translations to

achieve faithfulness

• Sketch the flow and type frameworks used by

our translations

4

Types: Local Reasoning

I stands for the integer type

[f :I→ I] ` f : I→ I [f :I→ I] ` 3 : I

[f :I→ I] ` f@3 : I

[] ` λf.f@3 : (I→ I)→ I

[x :I] ` x : I

[] ` λx.x : I→ I

[] ` (λf.f@3)@(λx.x) : I

5

Flows: Global Reasoning

ρ: Variables→ P(FlowVal) C: Program point→ P(FlowVal)

Flow analysis (least 0-CFA) for P =(λf.f@3)@(λx.x)

{λx.x}= C(λx.x)= ρ(f)= C(f)

{λf.f@3}= C(λf.f@3)

{Int}= C(3)= ρ(x)= C(x)= C(f@3)= C(P)

Correctness criteria include:

• λx.x∈C(f) implies C(3)⊆ ρ(x)

Safety includes:

• Int /∈ ρ(f)

6

Correspondence in Monovariant Case

Equivalence result by

Palsberg & O’Keefe [POPL’95]

Amadio & Cardelli:

• int, σ → σ

• ⊥, >

• recursive types

• subtyping

accept the same programs

0-CFA augmented with

• safety checks

• analysis of dead code

7

Correspondence in Polyvariant Case

Equivalence result by

Palsberg & Pavlopoulou [POPL’98]

Type system with finitary polymorphism:

• int, σ → σ

• recursive types

• subtyping

• union types (model multiple sources)

• intersection (model multiple sinks)

translations back and forth

Flow analysis with finitary polyvariance

• argument-based (not call-string)

• safety checks

• analysis also of dead code

8

Monovariant Round Trip

[f :I→ I] ` f : I→ I . . . ` 3 : I

[f :I→ I] ` f@3 : I

[] ` λf.f@3 : (I→ I)→ I

[x :I] ` x : I

[] ` λx.x : I→ I

[] ` P = (λf.f@3)@(λx.x) : I

F(I)= {Int}
F(I → I)= {λx.x}
F((I → I) → I)= {λf.f@3}

T ({Int}) = I

T ({λx.x})= T (ρ(x)) → T (C(x))= I → I

T ({λf.f@3})= T (ρ(f)) → T (C(f@3))
=(I → I) → I

{λx.x}= ρ(f)= C(f)= C(λx.x)

{λf.f@3}= C(λf.f@3)

{Int}= C(3)= ρ(x)= C(x)= C(f@3)= C(P)

9

Round Trip Losing Flow Information

[] ` λx.succ x : I→ I

[] ` λy.y : I→ I . . .

[] ` (λy.y)@3 : I

[] ` P = (λx.succ x)@ ((λy.y)@3) : I

T ({λy.y})= I→ I

= T (ρ(y))→ T (C(y))

T ({λx.succ x})= I→ I

F(I→ I)= {λx.succ x, λy.y}

{Int}= ρ(x)= C(x)= C(succ x)
= ρ(y)= C(y)= C(3)
= C((λy.y)@3)= C(P)

{λx.succ x}= C(λx.succ x)
{λy.y}= C(λy.y)

{Int}=. . . as before

{λx.succ x, λy.y}

= C′(λx.succ x)

= C′(λy.y)

10

Round Trip Preserving Flow Information

Method used by Heintze [SAS’95] for monovariant case:

[] ` λx.succ x : I
{x}
→ I

[] ` λy.y : I
{y}
→ I . . .

[] ` (λy.y)@3 : I

[] ` P = (λx.succ x)@ ((λy.y)@3) : I

T ({λy.y})= I
{y}
→ I

= T (ρ(y))
{y}
→ T (C(y))

T ({λx.succ x})= I
{x}
→ I

F(I
{x}
→ I)= {λx.succ x}

F(I
{y}
→ I)= {λy.y}

{Int}= ρ(x)= C(x)= C(succ x)= ρ(y)
= C(y)= C(3)= C((λy.y)@3)= C(P)

{λx.succ x}= C(λx.succ x)
{λy.y}= C(λy.y)

We adapt to polyvariant case 11

Roundtrip (Polyvariant) Introducing Infinite Types

I2I= I→ I u=∧{I2I, I2I→ I2I}

[f :u] ` f : I2I→ I2I [f :u] ` f : I2I
2

[f :u] ` f@ f : I2I . . .
1

[f :u] ` (f@ f)@7 : I

[] ` λf.(f@ f)@7 : u→ I

[x :I] `1 x : I

[x :I2I] `2 x : I2I

[] ` λx.x : u

[] ` P = (λf.(f@ f)@7)@(λx.x) : I

{λx.x}=F(I2I)

=F(I2I→ I2I)

T ({λx.x}) =∧{T (ρ(x,1))→ T (C(x, [x :1])),

T (ρ(x,2))→ T (C(x, [x :2]))}

=∧{I→ I, T ({λx.x}) → T ({λx.x}) }

ρ(x,1)= C(x, [x :1])= {Int} ρ(x,2)= C(x, [x :2])= {λx.x}

1 and 2 “mementa” denoting sink(s) 12

Roundtrip Preserving Type Finiteness

[f :u] ` f : I2I→ I2I [f :u] ` f : I2I
2

[f :u] ` f@ f : I2I . . .
1

[f :u] ` (f@ f)@7 : I

[] ` λf.(f@ f)@7 : u→ I

[x :I] `1 x : I

[x :I2I] `2 x : I2I

[] ` λx.x : u

[] ` P = (λf.(f@ f)@7)@(λx.x) : I

u=∧{I2I, I2I → I2I}

F(I2I)= {(λx.x, {1})}
F(I2I → I2I)= {(λx.x, {2})}

F(u)= {(λx.x, {1,2})}

T ({(λx.x, {1})})= I2I

= T (ρ(x,1)) → T (C(x, [x :1]))

T ({(λx.x, {2})})= I2I → I2I

= T (ρ(x,2)) → T (C(x, [x :2]))
T ({(λx.x, {1,2})})

=∧{I2I, I2I → I2I}=u

ρ(x,1)= C(x, [x :1])= {Int}

ρ(x,2)= C(x, [x :2])=F(I2I)= {(λx.x, {1})}

We equip flow values with sinks 13

Road map

• Summarize existing translations between flows and type

and show how they lack faithfulness

• Sketch how to modify systems and translations to

achieve faithfulness

• Sketch the flow and type frameworks used by

our translations

14

Polymorphic Type System

u ::=
∨
i∈I{qi : ti}

I finite qi disjoint

tagged union

• model multiple sources

q ∈ U-tag track sources

t ::= I

|
∧
i∈I{Ki : ui → u′i}

I finite Ki disjoint 6= ∅

tagged intersections

• model multiple sinks

K ::= {k1 . . . kn}

k ∈ I-tag
track sinks

Infinite types

• regular and finitely branching
• model flow cycles [Heintze, SAS’95]
• no explicit syntax

15

Subtyping

Coinductive definition

Untagged rule Tagged rule

∨
i∈I{ti}≤u

∨
j∈J{t

′
j}

iff
∀i ∈ I. ∃j ∈ J. ti≤t t

′
j

∨
i∈I{qi : ti}≤u

∨
j∈J{q

′
j : t

′
j}

iff
∀i ∈ I. ∃j ∈ J. qi= q′j and ti≤t t

′
j

∧{u1 → u′1, u2 → u′2}

≤t∧{u1 → u′1}

∧
{K1 : u1 → u′1, K2 : u2 → u′2}

≤t
∧
{K1 : u1 → u′1}

∧{u1 → u, u2 → u}

≤t∧{(∨{u1, u2})→ u}

∧
{K1 : u1 → u,K2 : u2 → u}

≤t
∧
{K1 ∪K2 : ∨{u1, u2} → u}

Involves choice Tags are witnesses

Last two rules special cases of complex rule

16

Typing Rules

[var]
A ` x : u

if A(x)≤u u (subtyping inlined)

∀k ∈ K : A[x :uk] ` e : u′k
[fun](q:t)

A ` λx.e : u

if
∨
{q : t}≤u u with t=

∧
k∈K{{k} : uk → u′k}

q enables us to trace back the source

K may be empty (for dead code),

letting flows have it their way

A ` e1 : u1 A ` e2 : u2
[app]w

A ` e1@ e2 : u

if u1=
∨
q∈Q{q :

∧
{w(q) : u2 → u}}

For a given source q, [app]w is a sink of the

abstraction labeled q analyzed at the

mementa(s) in w(q)

17

Polyvariant Derivation

u=
∨
{x :

∧
{{1} : I→ I, {2} : u′ → u′}}

u′=
∨
{x :

∧
{{1} : I→ I}} u′′=

∨
{x :

∧
{{2} : u′ → u′}}

u0=
∨
{f :

∧
{{0} : u→ I}}

[f :u] ` f : u′′ [f :u] ` f : u′

w2
[f :u] ` f@ f : u′ . . .

w1
[f :u] ` (f@ f)@7 : I

[] ` λf.(f@ f)@7 : u0

[x :I] `1 x : I

[x :u′] `2 x : u′

[] ` λx.x : u

[] ` P = (λf.(f@ f)@7)@(λx.x) : I

Here w1(x)= {1} and w2(x)= {2}

18

The Flow Logic

Flow value: ((λx.e,me),M)

Specification (coinductive):

(C, ρ) |=me e denotes that
(C,ρ) is a correct analysis of e wrt. me

We extend N&N to model P&P’s cover :

(C, ρ) |=me e1@ e2 iff

. . . ∀((λx.e0,me0),M0) ∈ C(e1,me).
∃M ⊆ M0. . . . C(e2,me)⊆∪m∈Mρ(x,m)

Expressive power:

• Models monovariance (0-CFA)

when mementa universe = {•}

• Models call-string based analysis (k-CFA)
where mementa are strings (length ≤ k)
of application site labels

• Models argument-based analyses

(encodes P&P) where mementa

correspond to sets of flow values

• Does not model polymorphic splitting
19

Translations and Roundtrips

Theorem Subject reduction (flows & types)

Theorem (proof by coinduction): valid and uniform typing

translates into valid and safe flow analysis

Theorem: valid and safe flow analysis translates into valid

and uniform typing

Theorem: the roundtrips are faithful, and

• the canonical flow analyses are those where

everything is “reachable”

• the canonical type derivation are those which are

“consistent”

20

Conclusion

We have achieved isomorphism (for canonical items) by

• augmenting types with source tags and

• augmenting flows with sink tags

What is this work good for?

• Can switch between perspectives (cf. polar/rectangular)

• Can encode flow information in a typed intermediate

language for compilation (e.g., CIL)

21

