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What is Program Slicing?

Pick one or more program points of interest, called the
slicing criterion
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What is Program Slicing?

Walk backwards to find the nodes (the slice set) that the
nodes in the slicing criterion depend on

I through data dependence, or

I through control dependence

Remove nodes not in the slice set.
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What is Program Slicing?

Applications include

I compiler optimizations

I debugging

I model checking

I protocol understanding
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Probabilistic Setting

Example:

1
x := Rd

2
y := Rd

3
x + y≥Obs5

4
Ret(x)

We shall work with CFGs (control flow graphs) with

I a unique End node, returning the final result
I random assignments from a given distribution

I In this talk, we shall always use the one that assigns
each of 0,1,2,3 equal probability (0.25)

I conditioning nodes (Observe) which remove
“undesired” value combinations.

Applications: see excellent survey article [ICSE’2014] by
Andrew Gordon et al
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Probabilistic Semantics

1
x := Rd

2
y := Rd

3
x + y≥Obs5

4
Ret(x)

Semantics is expressed using distributions which assign
probabilities to stores.

I special deterministic case: one store has probability
1, all other stores have probability 0

Distribution D before node 3:

D({x 7→ i , y 7→ j}) = 1/16 for i , j ∈ 0..3

Distribution D after node 3:

D({x 7→ 3, y 7→ 2}) = 1/16

D({x 7→ 2, y 7→ 1}) = 0

Thus
∑

D < 1 is possible (can later be normalized)
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Slicing: the Challenge

Question: can we slice away nodes 2 and 3 in

1
x := Rd

2
y := Rd

3
x + y≥Obs5

4
Ret(x)

so as to arrive at

1
x := Rd

4
Ret(x)

In the original program:

I classically, 4 depends only on 1, so yes

I but the final distribution of x is skewed (x ≤ 1 is
impossible) so NO

We need to be more careful!
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Our Goals

I state what is means for slicing to be correct in a
probabilistic setting

I give syntactic conditions that guarantee semantic
correctness

I present algorithm to find best syntactic slice.
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When Slicing is Correct: Semantic Definition

Question: can we slice away nodes 2 and 3 in

1
x := Rd

2
y := Rd

3
y≥Obs2

4
Ret(x)

Final distribution D:

D({x 7→ i , y 7→ j}) = 1/16 for i ∈ 0..3, j ∈ 2..3

which restricted to the returned variable x is

D({x 7→ i}) = 1/8 for i ∈ 0..3

Final distribution ∆ of sliced program:

∆({x 7→ i}) = 1/4 for i ∈ 0..3

With c = 0.5 we have D = c ·∆ and shall therefore say
that slicing is correct as it does not skew the distribution
of the relevant variable x .
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Why Slicing is Correct: Syntactic Criterion

Question: how to infer, without semantic calculations,
that it is correct to slice away nodes 2 and 3 in

1
x := Rd

2
y := Rd

3
y≥Obs2

4
Ret(x)

The correctness relies on the fact that

I at node 4, x and y are probabilistically independent

which will be the case since

I the set of nodes {1} that may influence x is disjoint
from the set of nodes {2} that may influence y .

Initial Finding: A conditioning can be sliced away if

I the nodes that the End node depends on, and

I the nodes that the conditioning depends on

have nothing in common.
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When Slicing is Incorrect, and Why

We saw it is incorrect to slice away nodes 2 and 3 in

1
x := Rd

2
y := Rd

3
x + y≥Obs5

4
Ret(x)

since the final distribution D has say

D({x 7→ 1}) = 0 but D({x 7→ 2}) = 1/16

and with ∆ the uniform distribution of x in the sliced
program we thus for all c have

D 6= c∆

And indeed, our tentative syntactic correctness criterion
will disallow slicing, since

I the End node (data) depends on node 1, and

I the conditioning node (data) depends also on node 1.
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When Slicing is Incorrect, and Why (II)

Can we slice away nodes 2, 3 and 4 in

1
x := Rd

2
y := Rd

3
x ≥ 2

4
y≥Obs3

5
Ret(x)

T

F

No, since the final distribution D is skewed:

D({x 7→ 1}) = 1/4 but D({x 7→ 2}) = 1/16

And indeed, our tentative syntactic correctness criterion
will disallow slicing, since

I the End node depends on node 1, and

I the conditioning node control depends on node 3
which data depends on node 1.
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Tentative Syntactic Correctness Criterion

It appears that for Q to be a correct slice, we must
require that

I Q is “closed under dependency”
I all conditioning nodes not in Q must belong to

another set, Q0, such that
I Q and Q0 are disjoint
I Q0 is also closed under dependency.

We shall soon refine these conditions.
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Why Slicing Away Loops may be Incorrect

We can encode conditioning using loops: the example

1
x := Rd

2
y := Rd

3
x ≥ 2

4
y≥Obs3

5
Ret(x)

T

F

becomes

1
x := Rd

2
y := Rd

3
x ≥ 2

4
y < 3

5
y := y−1

6
Ret(x)

T

F

F

T
Above we can thus not slice away all nodes but 1 and 6

I though node 6 appears to depend on node 1 only.

We thus need to augment correctness criterion:

I all loops contain at least one node in Q ∪ Q0.

12 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

Weak Slice Sets

We shall now formalize “Q is closed under dependency”:

I data dependency (DD): straight-forward

I control dependency:
each node has exactly one next Q-observable

v ′ is a next Q-observable of v (there is at most one) iff

I v ′ ∈ Q ∪ {End}
I all paths from v to a node in Q ∪ {End} contain v ′.

We say that Q is a weak slice set if

I Q is closed under DD

I each node has a next Q-observable
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Weak Slice Sets, Example

Recall: v ′ is a next Q-observable of v iff
I v ′ ∈ Q ∪ {End}
I all paths from v to a node in Q ∪ {End} contain v ′.

1
x := Rd

2
y := Rd

3
x ≥ 2

4
y≥Obs3

5
Ret(x)

T

F

I With Q = {2, 4}, Q is closed under DD but node 3
does not have a next Q-observable:

I there is a path from 3 to 5 that does not contain 4
I there is a path from 3 to 4 that does not contain 5

I With Q = {2, 3, 4}, all nodes have next
Q-observables but is not closed under DD

I But Q = {1, 2, 3, 4} is a weak slice set
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Final Syntactic Correctness Criterion

We say that Q is a correct slice if there exists Q0 such
that (Q,Q0) is a slicing pair in that

I Q and Q0 are weak slice sets

I Q ∩ Q0 = ∅
I all conditioning nodes belong to Q ∪ Q0

I all loops contain a node in Q ∪ Q0.
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Semantics of Probabilistic CFGs

One-step reduction (v ,D)→ (v ′,D ′)

I v ′ successor of v

I transforms D into D ′

I defined for (random) assignments, and conditioning

Multi-step reduction (v ,D)⇒ (v ′,D ′)

I v ′ postdominates v

I combines paths from v to v ′ that may contain cycles
but do not contain v ′ until the very end

I defined as the limit (in D ′) of an inductively defined

relation (v ,D)
k⇒ (v ′,D ′) where k bounds the

number of cycles.

Conjecture: for CFGs produced from structured
programs, this semantics will coincide with the standard
denotational semantics [Kozen, Hur]
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Syntactic Criteria Imply Semantic Correctness

Assume that
I we have slicing pair (Q,Q0)
I v ′ postdominates v
I at v , the Q-relevant variables and the Q0-relevant

variables are probabilistically independent in D.

Then there always exists a real number c with 0 ≤ c ≤ 1
such that the below diagram commutes:

v

v ′

D ∆

D ′ ∆′c

sliceoriginal

agree on Q-relevant variables

agree on Q-relevant variables
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Probabilistic Independence

When are R and R0 independent in D?

I classical definition: if for all s/s0 with domain R/R0:

D(s ⊕ s0) = D(s) · D(s0)

I in our setting when
∑

D may not equal 1: instead

D(s ⊕ s0) ·
∑

D = D(s) · D(s0).

Let (Q,Q0) be a slicing pair, and assume

(v ,D)
k⇒ (v ′,D ′).

I If at v , the Q-relevant variables are independent of
the Q0-relevant variables in D

I then at v ′, the Q-relevant variables are independent
of the Q0-relevant variables in D ′.
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Algorithm to Compute Best Syntactic Slice

We have an O(n3) algorithm to find the best slice.
Subcomponents:

1. a function that given Q either
I confirms that Q is a weak slice set, or
I returns C 6= ∅ such that C is contained in all weak

slice sets containing Q

and which works by a backwards breadth-first search
through nodes not in Q

I C will contain nodes reachable from two nodes

2. a function that given Q finds the least weak slice set
containing Q
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Semantic vs Syntactic Slices

Recall it is semantically unsound to slice away anything in

1
x := Rd

2
y := Rd

3
x ≥ 2

4
y < 3

5
y := y−1

6
Ret(x)

T

F

F

T
but if we change the loop body:

1
x := Rd

2
y := Rd

3
x ≥ 2

4
y < 3

5
y := y+1

6
Ret(x)

T

F

F

T
then all but 1 and 6 can be sliced away

I though {1, 6} does not meet our syntactic criteria.

Computing the best semantic slice is clearly undecidable
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Optimizations

One may in various ways transform the CFG so that the
semantics is preserved while smaller slices may be
generated:

I a conditioning Observe(B) may be removed if B
can be shown to always hold at that node

I after a conditioning of the form Observe(x = c),
insert an assignment x := c .
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Related Work

Our main inspiration is [Hur et al, PLDI’14].
I they present algorithm for slicing of probabilistic

structured programs
I involving various preprocessing
I doing various optimizations along the way.

I conditioning gives rise to a new kind of dependency:
I if conditioning depends on x and y then any slice

that includes y must also include x

I no separation between specification and
implementation

I this makes correctness proof more complex

I no analysis of asymptotic running time
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Our Contributions

I framework for slicing of probabilistic programs which
separates specification from implementation

I extends in non-trivial way classical slicing
frameworks (as generalized by Danicic [TCS 2011])

I presents operational semantics for probabilistic CFGs

I presents cubic-time algorithm for finding best
(syntactic) slice

Future/present work:

I allow to slice away loops that are know to always
(with probability 1) terminate
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When Algorithm Computes Non-Trivial Slice

We now show how the algorithm finds the best slicing
pair for

1
x := Rd

2
y := Rd

3
y≥Obs2

4
Ret(x)

1. Compute least weak slice set that contains 4:

1.1 close under DD: {1, 4}
1.2 nothing more is needed for unique next observable

2. Compute least weak slice set that contains 3 (the
conditioning):

2.1 close under DD: {2, 3}
2.2 nothing more is needed for unique next observable

As {1, 4} ∩ {2, 3} are disjoint, this shows that Q = {1, 4}
is a valid slice (with Q0 = {2, 3}).
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How Algorithm Handles Loops

Recall that we require

for each loop, at least one node is in Q ∪ Q0

I this may appear to allow incompatible solutions

I but is equivalent to the below

for each loop,
the node(s) with “minimal height” is in Q ∪ Q0
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When Algorithm Reveals No Non-Trivial Slice

1
x := Rd

2
y := Rd

3
x ≥ 2

4
y < 3

5
y := y−1

6
Ret(x)

T

F

F

T
1. Compute least weak slice set that contains 6:

1.1 close under DD: {1, 6}
1.2 nothing more is needed for unique next observable

2. Compute least weak slice set that contains 4 (the
loop node closest to 6):
2.1 close under DD: {2, 4, 5}
2.2 a backwards search from {2, 4, 5} ∪ {6} will hit 3

from 4 and from 6 so we need to add 3: {2, 3, 4, 5}
2.3 again close under DD: {1, 2, 3, 4, 5}

As the two results are not disjoint, we cannot put the
second result in Q0; instead, we must put it in Q and end
up with a trivial slice: Q = {1, 2, 3, 4, 5, 6}
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