
Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

A Theory of Slicing for
Probabilistic Control Flow Graphs

Torben Amtoft (Kansas State University)
Anindya Banerjee (IMDEA Software Institute)

FoSSaCS, April 2016

1 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

What is Program Slicing?

Pick one or more program points of interest, called the
slicing criterion

2 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

What is Program Slicing?

Walk backwards to find the nodes (the slice set) that the
nodes in the slicing criterion depend on

I through data dependence, or

I through control dependence

Remove nodes not in the slice set.

2 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

What is Program Slicing?

Applications include

I compiler optimizations

I debugging

I model checking

I protocol understanding

2 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

Probabilistic Setting

Example:

1
x := Rd

2
y := Rd

3
x + y≥Obs5

4
Ret(x)

We shall work with CFGs (control flow graphs) with

I a unique End node, returning the final result
I random assignments from a given distribution

I In this talk, we shall always use the one that assigns
each of 0,1,2,3 equal probability (0.25)

I conditioning nodes (Observe) which remove
“undesired” value combinations.

Applications: see excellent survey article [ICSE’2014] by
Andrew Gordon et al

3 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

Probabilistic Semantics

1
x := Rd

2
y := Rd

3
x + y≥Obs5

4
Ret(x)

Semantics is expressed using distributions which assign
probabilities to stores.

I special deterministic case: one store has probability
1, all other stores have probability 0

Distribution D before node 3:

D({x 7→ i , y 7→ j}) = 1/16 for i , j ∈ 0..3

Distribution D after node 3:

D({x 7→ 3, y 7→ 2}) = 1/16

D({x 7→ 2, y 7→ 1}) = 0

Thus
∑

D < 1 is possible (can later be normalized)

4 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

Slicing: the Challenge

Question: can we slice away nodes 2 and 3 in

1
x := Rd

2
y := Rd

3
x + y≥Obs5

4
Ret(x)

so as to arrive at

1
x := Rd

4
Ret(x)

In the original program:

I classically, 4 depends only on 1, so yes

I but the final distribution of x is skewed (x ≤ 1 is
impossible) so NO

We need to be more careful!

5 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

Slicing: the Challenge

Question: can we slice away nodes 2 and 3 in

1
x := Rd

2
y := Rd

3
x + y≥Obs5

4
Ret(x)

so as to arrive at

1
x := Rd

4
Ret(x)

In the original program:

I classically, 4 depends only on 1, so yes

I but the final distribution of x is skewed (x ≤ 1 is
impossible) so NO

We need to be more careful!

5 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

Slicing: the Challenge

Question: can we slice away nodes 2 and 3 in

1
x := Rd

2
y := Rd

3
x + y≥Obs5

4
Ret(x)

so as to arrive at

1
x := Rd

4
Ret(x)

In the original program:

I classically, 4 depends only on 1, so yes

I but the final distribution of x is skewed (x ≤ 1 is
impossible) so NO

We need to be more careful!

5 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

Our Goals

I state what is means for slicing to be correct in a
probabilistic setting

I give syntactic conditions that guarantee semantic
correctness

I present algorithm to find best syntactic slice.

6 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

When Slicing is Correct: Semantic Definition

Question: can we slice away nodes 2 and 3 in

1
x := Rd

2
y := Rd

3
y≥Obs2

4
Ret(x)

Final distribution D:

D({x 7→ i , y 7→ j}) = 1/16 for i ∈ 0..3, j ∈ 2..3

which restricted to the returned variable x is

D({x 7→ i}) = 1/8 for i ∈ 0..3

Final distribution ∆ of sliced program:

∆({x 7→ i}) = 1/4 for i ∈ 0..3

With c = 0.5 we have D = c ·∆ and shall therefore say
that slicing is correct as it does not skew the distribution
of the relevant variable x .

7 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

Why Slicing is Correct: Syntactic Criterion

Question: how to infer, without semantic calculations,
that it is correct to slice away nodes 2 and 3 in

1
x := Rd

2
y := Rd

3
y≥Obs2

4
Ret(x)

The correctness relies on the fact that

I at node 4, x and y are probabilistically independent

which will be the case since

I the set of nodes {1} that may influence x is disjoint
from the set of nodes {2} that may influence y .

Initial Finding: A conditioning can be sliced away if

I the nodes that the End node depends on, and

I the nodes that the conditioning depends on

have nothing in common.

8 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

When Slicing is Incorrect, and Why

We saw it is incorrect to slice away nodes 2 and 3 in

1
x := Rd

2
y := Rd

3
x + y≥Obs5

4
Ret(x)

since the final distribution D has say

D({x 7→ 1}) = 0 but D({x 7→ 2}) = 1/16

and with ∆ the uniform distribution of x in the sliced
program we thus for all c have

D 6= c∆

And indeed, our tentative syntactic correctness criterion
will disallow slicing, since

I the End node (data) depends on node 1, and

I the conditioning node (data) depends also on node 1.

9 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

When Slicing is Incorrect, and Why (II)

Can we slice away nodes 2, 3 and 4 in

1
x := Rd

2
y := Rd

3
x ≥ 2

4
y≥Obs3

5
Ret(x)

T

F

No, since the final distribution D is skewed:

D({x 7→ 1}) = 1/4 but D({x 7→ 2}) = 1/16

And indeed, our tentative syntactic correctness criterion
will disallow slicing, since

I the End node depends on node 1, and

I the conditioning node control depends on node 3
which data depends on node 1.

10 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

When Slicing is Incorrect, and Why (II)

Can we slice away nodes 2, 3 and 4 in

1
x := Rd

2
y := Rd

3
x ≥ 2

4
y≥Obs3

5
Ret(x)

T

F

No, since the final distribution D is skewed:

D({x 7→ 1}) = 1/4 but D({x 7→ 2}) = 1/16

And indeed, our tentative syntactic correctness criterion
will disallow slicing, since

I the End node depends on node 1, and

I the conditioning node control depends on node 3
which data depends on node 1.

10 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

Tentative Syntactic Correctness Criterion

It appears that for Q to be a correct slice, we must
require that

I Q is “closed under dependency”
I all conditioning nodes not in Q must belong to

another set, Q0, such that
I Q and Q0 are disjoint
I Q0 is also closed under dependency.

We shall soon refine these conditions.

11 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

Why Slicing Away Loops may be Incorrect

We can encode conditioning using loops: the example

1
x := Rd

2
y := Rd

3
x ≥ 2

4
y≥Obs3

5
Ret(x)

T

F

becomes

1
x := Rd

2
y := Rd

3
x ≥ 2

4
y < 3

5
y := y−1

6
Ret(x)

T

F

F

T
Above we can thus not slice away all nodes but 1 and 6

I though node 6 appears to depend on node 1 only.

We thus need to augment correctness criterion:

I all loops contain at least one node in Q ∪ Q0.

12 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

Weak Slice Sets

We shall now formalize “Q is closed under dependency”:

I data dependency (DD): straight-forward

I control dependency:
each node has exactly one next Q-observable

v ′ is a next Q-observable of v (there is at most one) iff

I v ′ ∈ Q ∪ {End}
I all paths from v to a node in Q ∪ {End} contain v ′.

We say that Q is a weak slice set if

I Q is closed under DD

I each node has a next Q-observable

13 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

Weak Slice Sets, Example

Recall: v ′ is a next Q-observable of v iff
I v ′ ∈ Q ∪ {End}
I all paths from v to a node in Q ∪ {End} contain v ′.

1
x := Rd

2
y := Rd

3
x ≥ 2

4
y≥Obs3

5
Ret(x)

T

F

I With Q = {2, 4}, Q is closed under DD but node 3
does not have a next Q-observable:

I there is a path from 3 to 5 that does not contain 4
I there is a path from 3 to 4 that does not contain 5

I With Q = {2, 3, 4}, all nodes have next
Q-observables but is not closed under DD

I But Q = {1, 2, 3, 4} is a weak slice set

14 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

Final Syntactic Correctness Criterion

We say that Q is a correct slice if there exists Q0 such
that (Q,Q0) is a slicing pair in that

I Q and Q0 are weak slice sets

I Q ∩ Q0 = ∅
I all conditioning nodes belong to Q ∪ Q0

I all loops contain a node in Q ∪ Q0.

15 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

Semantics of Probabilistic CFGs

One-step reduction (v ,D)→ (v ′,D ′)

I v ′ successor of v

I transforms D into D ′

I defined for (random) assignments, and conditioning

Multi-step reduction (v ,D)⇒ (v ′,D ′)

I v ′ postdominates v

I combines paths from v to v ′ that may contain cycles
but do not contain v ′ until the very end

I defined as the limit (in D ′) of an inductively defined

relation (v ,D)
k⇒ (v ′,D ′) where k bounds the

number of cycles.

Conjecture: for CFGs produced from structured
programs, this semantics will coincide with the standard
denotational semantics [Kozen, Hur]

16 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

Syntactic Criteria Imply Semantic Correctness

Assume that
I we have slicing pair (Q,Q0)
I v ′ postdominates v
I at v , the Q-relevant variables and the Q0-relevant

variables are probabilistically independent in D.

Then there always exists a real number c with 0 ≤ c ≤ 1
such that the below diagram commutes:

v

v ′

D ∆

D ′ ∆′c

sliceoriginal

agree on Q-relevant variables

agree on Q-relevant variables

17 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

Probabilistic Independence

When are R and R0 independent in D?

I classical definition: if for all s/s0 with domain R/R0:

D(s ⊕ s0) = D(s) · D(s0)

I in our setting when
∑

D may not equal 1: instead

D(s ⊕ s0) ·
∑

D = D(s) · D(s0).

Let (Q,Q0) be a slicing pair, and assume

(v ,D)
k⇒ (v ′,D ′).

I If at v , the Q-relevant variables are independent of
the Q0-relevant variables in D

I then at v ′, the Q-relevant variables are independent
of the Q0-relevant variables in D ′.

18 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

Algorithm to Compute Best Syntactic Slice

We have an O(n3) algorithm to find the best slice.
Subcomponents:

1. a function that given Q either
I confirms that Q is a weak slice set, or
I returns C 6= ∅ such that C is contained in all weak

slice sets containing Q

and which works by a backwards breadth-first search
through nodes not in Q

I C will contain nodes reachable from two nodes

2. a function that given Q finds the least weak slice set
containing Q

19 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

Semantic vs Syntactic Slices

Recall it is semantically unsound to slice away anything in

1
x := Rd

2
y := Rd

3
x ≥ 2

4
y < 3

5
y := y−1

6
Ret(x)

T

F

F

T
but if we change the loop body:

1
x := Rd

2
y := Rd

3
x ≥ 2

4
y < 3

5
y := y+1

6
Ret(x)

T

F

F

T
then all but 1 and 6 can be sliced away

I though {1, 6} does not meet our syntactic criteria.

Computing the best semantic slice is clearly undecidable

20 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

Optimizations

One may in various ways transform the CFG so that the
semantics is preserved while smaller slices may be
generated:

I a conditioning Observe(B) may be removed if B
can be shown to always hold at that node

I after a conditioning of the form Observe(x = c),
insert an assignment x := c .

21 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

Related Work

Our main inspiration is [Hur et al, PLDI’14].
I they present algorithm for slicing of probabilistic

structured programs
I involving various preprocessing
I doing various optimizations along the way.

I conditioning gives rise to a new kind of dependency:
I if conditioning depends on x and y then any slice

that includes y must also include x

I no separation between specification and
implementation

I this makes correctness proof more complex

I no analysis of asymptotic running time

22 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Setting

Motivating Examples

Correctness Condition

Semantics

Algorithm

Conclusion

Our Contributions

I framework for slicing of probabilistic programs which
separates specification from implementation

I extends in non-trivial way classical slicing
frameworks (as generalized by Danicic [TCS 2011])

I presents operational semantics for probabilistic CFGs

I presents cubic-time algorithm for finding best
(syntactic) slice

Future/present work:

I allow to slice away loops that are know to always
(with probability 1) terminate

23 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Algorithm, Examples

When Algorithm Computes Non-Trivial Slice

We now show how the algorithm finds the best slicing
pair for

1
x := Rd

2
y := Rd

3
y≥Obs2

4
Ret(x)

1. Compute least weak slice set that contains 4:

1.1 close under DD: {1, 4}
1.2 nothing more is needed for unique next observable

2. Compute least weak slice set that contains 3 (the
conditioning):

2.1 close under DD: {2, 3}
2.2 nothing more is needed for unique next observable

As {1, 4} ∩ {2, 3} are disjoint, this shows that Q = {1, 4}
is a valid slice (with Q0 = {2, 3}).

24 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Algorithm, Examples

How Algorithm Handles Loops

Recall that we require

for each loop, at least one node is in Q ∪ Q0

I this may appear to allow incompatible solutions

I but is equivalent to the below

for each loop,
the node(s) with “minimal height” is in Q ∪ Q0

25 / 26



Slicing Probabilistic
Control Flow Graphs

Amtoft & Banerjee

Algorithm, Examples

When Algorithm Reveals No Non-Trivial Slice

1
x := Rd

2
y := Rd

3
x ≥ 2

4
y < 3

5
y := y−1

6
Ret(x)

T

F

F

T
1. Compute least weak slice set that contains 6:

1.1 close under DD: {1, 6}
1.2 nothing more is needed for unique next observable

2. Compute least weak slice set that contains 4 (the
loop node closest to 6):
2.1 close under DD: {2, 4, 5}
2.2 a backwards search from {2, 4, 5} ∪ {6} will hit 3

from 4 and from 6 so we need to add 3: {2, 3, 4, 5}
2.3 again close under DD: {1, 2, 3, 4, 5}

As the two results are not disjoint, we cannot put the
second result in Q0; instead, we must put it in Q and end
up with a trivial slice: Q = {1, 2, 3, 4, 5, 6}

26 / 26


	Setting
	Motivating Examples
	Correctness Condition
	Semantics
	Algorithm
	Conclusion
	Appendix
	Algorithm, Examples


